Need Help?

Good vibrations at MIT


Lip reading is a critical means of communication for many deaf people, but it has a drawback: Certain consonants (for example, p and b) can be nearly impossible to distinguish by sight alone.

Tactile devices, which translate sound waves into vibrations that can be felt by the skin, can help overcome that obstacle by conveying nuances of speech that can’t be gleaned from lip reading.

Researchers in MIT’s Sensory Communication Group are working on a new generation of such devices, which could be an important tool for deaf people who rely on lip reading and can’t use or can’t afford cochlear implants. The cost of the device and the surgery make cochlear implants prohibitive for many people, especially in developing countries.

“Most deaf people will not have access to that technology in our lifetime,” said Ted Moallem, a graduate student working on the project. “Tactile devices can be several orders of magnitude cheaper than cochlear implants.”

Moallem and Charlotte Reed, senior research scientist in MIT’s Research Laboratory of Electronics and leader of the project, say the software they are developing could be compatible with current smart phones, allowing such devices to be transformed into unobtrusive tactile aids for the deaf.

“Anyone who has a smart phone already has much of what they would need to run the program,” including a microphone, digital signal-processing capability, and a rudimentary vibration system, says Moallem.

Tactile devices translate sound waves into vibrations that allow the user to distinguish between vibratory patterns associated with different sound frequencies. The MIT researchers are testing devices that have at least two vibration ranges, one for high-frequency sounds and one for low-frequency sounds.

Read the original article in full on the MIT website.